
Neural networks for effect prediction in environmental and health
issues using large datasets
Klaus L. E. Kaiser*

National Water Research Institute, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada

Abstract

Neural network methodologies allow the modeling of non-
linear relationships. This makes them useful tools for the
analysis of larger data sets of non-congeneric compounds
with unknown or varying modes of action. This brief
review describes recent advances and their applications to

sets of several hundred to over 1000 compounds, modeling
acute toxicity data for several aquatic species, including
fish, ciliate, bacteria, and non-acute toxicity data for a
mammalian species endpoint, i.e. estrogen receptor bind-
ing assay data.

1 Introduction

The Domestic Substances List (DSL) tabulates approxi-
mately 25000 substances which are in current use inCanada.
An additional 50000 substances are on the Non-Domestic
Substances List, comprising those compounds which are in
use either below the threshold limit of 100 kg/year or only
used elsewhere. Worldwide, the estimate of substances in
use is in excess of 100000. Based on the recognition of
bioaccumulation, toxicity, and persistence in the environ-
ment as the three most important properties determining
the pathways and effects of chemicals in the environment,
countries belonging to the Organization for Economic
Cooperation and Development (OECD) have begun to
undertake research and regulatory initiatives to collate
information on and to assess the potential harmful effects of
these substances on the environment and human health.

One critical issue in this endeavor is the lack of physico-
chemical and toxicological data for many, in fact most of
these substances. Measurements of these properties are
both time consuming and costly and avenues to reliably

estimate such properties are required. Since the mid-20th

century, the field of quantitative structure-activity relation-
ships (QSARs) has developed into a highly useful science,
particularly for the development of new and potent
pharmaceuticals and the optimization of desirable effects
by QSAR-driven variations of the basic chemical structures.
In contrast, in the environmental arena, the application of
QSAR was adopted much later in the 1980×s, when Rachel
Carson×s Silent Spring lead to a widespread recognition for
the need to research and regulate this field.

Numerous mathematical models have been developed to
aid in the analysis of effect data in relation to the structures
of the chemical agents involved and many models are in use
to predict hundreds of different types of effects, from acute
lethality to chronic and sub-lethal effects, to effect threshold
concentrations. In addition, a variety of physico-chemical
properties, such as hydrophilicity and hydrophobicity
parameters, ionization constants, solubility, melting and
boiling points, and other molecular properties are being
estimated by an increasing number of computer programs
and with increasing accuracy. Until recently, successful
QSARs, using linearmodeling techniques,weremore or less
predicated on small data sets of chemicals with an uniform
mode of action, and congeneric chemical frameworks.

The development of non-linear technologies, artificial
intelligence-based algorithms opened the field to the con-
current analysis of a wider variety of structures with
(potentially) varying modes of action and non-congeneric
chemicals. This possibility is especially useful in the effect
modeling of the wide variety of substances entering the
environment from human activity and enterprise. This brief
review will look at some of the issues, results and recent
attempts in this field.
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2 Acute toxicity of chemicals to aquatic organisms

Over the last twodecades, three substantial toxicity data sets
were developed in this field; they are (i) the fathead minnow
lethal concentration (96-hr LC50) data for approximately
900 substances, measured largely by the U.S. Environmental
Protection Agency×s Research Laboratory at Duluth, MN,
and available through AQUIRE [1]; (ii) the 40 to 72-hr
growth-inhibitory (ICG50) values for the ciliate Tetrahy-
mena pyriformis, largely determined at the University of
Tennessee, Knoxville, TN, published values in the literature
encompass approximately 1200 substances, available from
T.W. Schultz; and (iii) the 5 to 30-min effective concen-
tration (EC50) values for the luminescent marine bacterium
Vibrio fischeri (formerly known as Photobacterium phos-
phoreum), covering approximately 2200 substances, avail-
able in substructure-searchable electronic format from
TerraBase Inc. [2]. In addition, smaller data sets, covering
from one hundred to several hundred substances are
available for the acute toxicities of individual chemicals to
several fish species, including the rainbow trout (Onco-
rhynchusmykiss), the zebrafish (Brachydanio rerio), the red
killifish (Oryzias latipes), the guppy (Poecilia reticulata), the
goldorfe (Leuciscus idusmelanotus), the goldfish (Carassius
auratus), the channel catfish (Ictalurus punctatus), and the
bluegill (Lepomis macrochirus), as well as the to waterflea
(Daphnia magna) and the algaeChlorella sp. These data are
also available from both commercial and non-commercial
sources, e.g. [1, 2].

2a QSARs of fathead minnow LC50 data

Numerous reports can be found evaluating various subsets
of the fathead minnow (FHM) 96-hr LC50 data. In addition
to the models proposed in the literature, the computer
programECOSAR[3], available fromU.S. governmentweb
sites and others, which derives 96-hr LC50 FHM estimates
from measured or calculated octanol/water (log Kow, or
logP) partition coefficients by applying these to over one
hundred individual linear regressions. However, many of
the underlying equations in ECOSAR lack any degree of
statistical significance (as many are based on one or two
substances only) and are further compromised by the need
to know the use of the substance in question, as pointed out
in [4]. Due to the variety of structures of the chemicals in the
FHM data set, a number of different modes of action have
been identified. Some modes of action, apparent from the
behavior of the fish upon exposure, are also known as fish
acute toxicity syndromes and have been predicted on the
basis of the chemicals× structures [5].

With the increasing availability of neural network meth-
ods, several studies have been published on the entire FHM
data set or large sub sets, using these methods. Without
going into details of these reports, the following should be
mentioned. One of the first investigations on the use of
neural network methodology with aquatic toxicity data was
the application of the feed forward back-propagation net-

work (BPN) to approximately 400FHM data byKaiser et al.
[6]. Jurs and coworkers [7] studied a subset of that,
comprising 375 substances with an artificial neural network
(ANN) method. Kaiser and Niculescu [8] used a probabil-
istic neural network (PNN) to analyze essentially the full set
of 865 FHM values for organic substances. These models
were sufficiently successful to be used for the quantitative
estimation of FHM values for a large number of DSL
substances. Furthermore, a very detailed study employing a
variety of statistical measures by Moore et al. [9], and using
an external test set of 130 substances derived from other
sources, showed that the PNN results were superior in
almost all aspects when compared to the other models×
predictions, including those of ECOSAR [3], ASTER [10],
and TOPKAT [11]. These results clearly demonstrate both
the general ability of neural network methods to be capable
of modeling such diverse data sets and the specific ability of
the PNN in doing so. Moreover, only the ECOSAR and
PNN methods were able to provide estimates for all
compounds in the testing data set.

Quite recently, TerraBase Inc. [2] released a commercially
available stand-alone fathead minnow 96-hr LC50 toxicity
estimation program under the name TerraQSAR��-FHM,
which is also based on the PNN methodology. It has not yet
been part of any comparative study, such as the one by
Moore et al. [9], however a graph showing the estimated and
measured values for the training data set is provided in the
manual of that program and indicates a high degree of
correlation.

2b QSARs of Daphnia magna LC50 data

The waterflea, Daphnia magna, is used worldwide as an
aquatic test organism. Tests are usually performed in static
systems of several liters size and a recommended test
protocol has been developed (OECD Test Guideline 202,
Part I, under revision) by the Organization for Economic
Cooperation and Development (OECD). This test is also a
requirement for the assessment of environmental fate and
effects of high-production-volume chemicals in OECD
countries. Kaiser and Niculescu [12] published the first
large-data-set analysis of the acute (48-hr LC50) toxicity of
over 700 compounds of Daphnia magna using the PNN
approach. Daphnia magna acute toxicity values are also
being estimated by several computer programs, including
ECOSAR, ASTER and TOPKAT.

The PNN model [12] of the acute toxicity of
700�chemicals to Daphnia m. was fully cross-validated
using a 20%-leave-out procedure, i.e. using five randomsub-
sets of 80% each of the training set data. The resulting five
models showed very similar statistics, indicating the validity
of the main model. This was further tested by applying the
main model to an external test set of 76 compounds. The
values predicted for the external test set were in good
agreement with the experimental data. In comparison to the
estimates produced by ECOSAR for the same external test
data, the PNN model estimates were found to be much
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superior [12]. These plots of measured vs. predicted values
for the 76 compounds of the external test set obtained from
both the PNN and ECOSAR models are reproduced in
Figure 1; the Pearson×s r2 values for the test sets are 0.76
(PNN) and 0.32 (ECOSAR), respectively.

2c QSARs of Tetrahymena ICG50 data

Over a period of two decades, the results for approximately
1200 individual test compounds have been published by
T. W. Schultz, University of Tennessee, and coworkers for a
40 to 72-hr growth inhibition assay (ICG50) with the ciliate
Tetrahymena pyriformis. These data have also been ana-
lyzed with QSAR methods in numerous publications by
Schultz et al., e.g. [13], but mostly in small sub sets, typically
in the range of 20 to 30 substances each. Schultz and
coworkers also identified several mechanistic principles and
modes of toxic action of groups of substances. Many of these
highly significant relationships, however, cover less varia-
tion in chemical structure and properties when compared
with models for the much larger fish and Vibrio data sets
and, therefore, can be expected to perform better on such
selections than models dealing with larger sets and more
diverse, non-congeneric structures.

More recently, larger sets of theTetrahymena ICG50 data
have also been modeled with several neural network
methods. They include ANN study of approximately 400

compounds by Jurs and coworkers [14], a PNN study using
825 compounds by Niculescu et al. [15], and another PNN
studywith 1110 substances byKaiser et al. [16]. Burden et al.
[17] used a much smaller subset of these data, comprising
278 compounds, and a Bayesian Regularized Artificial
Neural Network (BRANN) for their investigation of
Tetrahymena. The results of the PNN work in [16] were
cross-validated with a leave-20%-out procedure and an
external test set of 75 compounds. All sub-models gave very
similar results with Pearson×s r2 values of 0.88� for the test
sets. In study [17], comprising 1000 compounds for the
training and 84 compounds for the test sets, the Pearson×s r2

valueswere 0.89 and0.80, respectively. In theBRANNstudy
with 278 compounds [17], using atomistic, topological,
connectivity and fragment parameters as the molecular
descriptors, very similar resultswere obtained for the test set
of 56 compounds. In summary, all of the tested neural
network methods showed good performance for both
training and test sets.

2d QSARs of Vibrio fischeri EC50 data

The Microtox¾ test uses the marine luminescent bacterium
Vibrio fischeri (formerly known as Photobacterium phos-
phoreum) and it became a commercially available stand-
ardized test, approximately two decades ago. Originally
developed for quick testing of the toxicity of effluents, it was
rapidly adopted by a number of groups to test individual
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Figure 1. Measured vs. predicted 48-hr LC50 data for Daphnia magna for an external testing set of 76 compounds; (A) prediction
results from a probabilistic neural network (PNN, 76 compounds predicted), (B) prediction results from ECOSAR (72 compounds
predicted). All values in log(L/mmol). Reproduced with permission from Environmental Toxicology and Chemistry 20, 420 ± 431 (2001),
copyright SETAC, Pensacola, Florida, USA.
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compounds for their light-diminishing effect on the bacte-
rial light emission (EC50). Since the test×s appearance, well
over two thousand chemicals have so been tested and the
data are available in monograph [18], as well as electronic,
chemical structure-fragment-searchable formats [2]. Vari-
ous subsets of the available EC50 values for approximately
2200 chemicals have been studied with a variety of QSAR
methods, including neural network algorithms. Among the
larger sets studied are those dealing with 604 chemicals by
Devillers and coworkers [19], and another set of 1068
compounds, including values for three different exposure
timesusing theBNNmethodology [20].Another studyusing
1200 compounds is using the PNN algorithm and structural
fragment descriptors as independent parameters [21].

Without going into details of these studies, it can be
generalized that the neural network methodologies applied
to these large, non-congeneric data sets have proven
successful in modeling the available data, typically spanning
up to ten orders of magnitude in the compounds× range of
toxic effects observed. Devillers [22] reviewed the use of
neural networks for large heterogeneous sets of molecules,
including the studies mentioned above, and concluded that
™... these models can often compete favorably with classical
regression models ...∫.

3 Sub-acute effects of chemicals to aquatic and non-
aquatic organisms

There is a rapidly rising volume of literature on the
application of neural network methods to specific non-
lethality endpoints for many types of effects, enzymes and
organisms. Except for physico-chemical properties, such as
the octanol/water partition coefficient and aqueous solubil-
ity and certain non-specific effects, such as carcinogenicity
and mutagenicity, the data sets in these fields rarely surpass
100 compounds at a time. Moreover, such data sets usually
comprise compounds with limited structural variation of a
base molecule. Many of these groups of data are generally
well suited for analysis by more traditional QSAR methods,
including classicalQSAR,principal component analysis and
related methods. Therefore, neural network methods have
only begun to be employed with such data when the other
methods failed to provide satisfactory results. The following
will give just a few examples of such cases.

3a Steroid receptor binding affinities

There is a considerable interest in the assessment of theDSL
substances vis-a-vis their potential endocrine disrupting
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Figure 2. Measured vs. predicted estrogen receptor binding affinity (RBA) data, values in log(RBA), where RBA is the binding affinity
relative to 17beta-estradiol (100%). Reproduced with permission from Water Quality Research J. Canada 36, 619 ± 630 (2001), copyright
CAWQ, Burlington, Ontario, Canada.
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effects on organisms. The binding affinity of compounds to
the hormone-receptor proteins is one possible endpoint
related to that. Consequently, efficient models of the
receptor binding of substances, and their agonistic and
antagonistic effects are highly desirable. A comparatively
small, but representative data set was developed and
analyzed by Van Helden et al. [23] for binding to the
progesterone receptor. The same group [24] also used a
combination of genetic algorithms and neural networks.
Later, Niculescu and Kaiser [25] used the same data with
different neural network methodologies. Independent of
the particular method applied, neural network models were
found to perform better than any of the traditional QSAR
methods.

Kaiser and Niculescu [26] also analyzed a data set of 1000
compounds known to bind to the estrogen receptor com-
plex. Specifically, the estrogen receptor binding affinity
(RBA) values of compounds relative to 17beta-estradiol
were used with a 20%-leave-out cross-validation and
external test set of another 118 substances. Both sets
comprise steroidal and non-steroidal structures with a large
variety of substitutents and molecular sizes and cover
approximately eight orders of magnitude in activity al-
though, because of the underlying goal to create compounds
with high binding affinity, the data available are somewhat
skewed towards the log(RBA) range of 0 to �3, with
relatively few values in the log(RBA) �5 to 0 range. While
the overall model clearly shows promise, it is not yet refined
enough to be of practical use. However, several sub-sets,
definedby certain structural conditions, such as thepresence
of halogens, or carboxylic acid groups, or carboxylic acid
ester groups, gave good correlations of predicted versus
measured results, indicating that such sub-models maybe
useful at this time in predicting estrogen receptor binding
affinity for such chemicals. Figure 2 shows the model results
filtered for the carboxylic ester moiety-containing com-
pounds in this data set; this set comprises 75 and 9
compounds in the training and test sets, respectively, and
this group has standard deviation errors of 0.28 (training)
and 0.20 (test) and Pearson×s r2 of�0.94, respectively. While
there are several studies in the literature on the prediction of
steroid RBA values, they all use much smaller training sets
and different assay selections than that used in [26].
Therefore, any comparison of the results between these
studies is not possible.

3b Various effects and properties

There are numerous studies on the application of artificial
intelligence methods, including neural networks to the
modeling of a host of biological effects and physico-
chemical properties of compounds. They will not be
reviewed here; suffice it to mention two important exam-
ples.Mammalian carcinogenicity andmutagenicity data sets
of several hundred compounds and different routes of
exposure and types of effect, have been analyzed by Bristol

and coworkers [27]. Devillers et al. [28] used a BNN to
investigate the biodegradability of organic chemicals.

4 Conclusions

Most studies with neural networks find that the versatility
and modeling capabilities of neural networks lead to results
that are at least at par, but frequently superior to those
obtained with traditional QSAR methods. Particularly for
data sets involving non-congeneric structures, such as many
of the substances tested with acute toxicity bioassays in the
studies mentioned here, non-linear neural networks usually
perform much better by recognizing and adapting to non-
linear relationships. Further advancements and, ultimately,
reliable neural-network-based effect prediction programs
can be expected to result from this research.
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