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Abstract

This review surveys the applications of neural network (NN) methodologies to the field of Quantitative Structure–Activity

Relationships (QSARs) in aquatic toxicology. Several NN methods have been applied to substantial data sets (some involving

over 1000 chemicals) for acute and sublethal toxicity endpoints for fish, invertebrate, protozoan and bacterial species. The

results clearly demonstrate the methods’ general ability to detect and apply non-linear structure–activity relationships for the

prediction of the corresponding values for compounds not part of the training sets.
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1. Introduction

Interest in the application of Quantitative Struc-

ture–Activity relationships (QSARs) to the field of

aquatic toxicology arose in the late 1970s. Large-scale

production and use of certain chemicals generated

widespread concern about their environmental and

health effects. During that time, a rapidly increasing

number of substances were identified as contaminants

of water, sediments and aquatic biota, and their

bioaccumulation and pathways in the aquatic environ-

ment were little understood. Public reaction forced the

USA, Canada, several European and Asian countries

and international organizations, such as the Organiz-

ation for Economic Cooperation and Development, to

create new environmental protection laws aiming to

curb or control substance release. For example, the

widespread occurrence of polychlorinated biphenyls

(PCBs) in the environment, first discovered by Jensen

[1], led to their regulation and eventual ban in Canada

[2], the USA [3] and elsewhere [4] during that time.

Also, standardization of certain tests allowing the

combination of experimental toxicological data from

different laboratories into larger data sets useful for

QSAR analysis, was adopted in various jurisdictions

and by the OECD [5]. To compensate for the severe

lack of compatible toxicological data for aquatic

organisms at the time, several research groups

initiated systematic measurement programs for quite

large sets of compounds, and some of this work is

continuing at this date. In terms of aquatic organisms,

most of the measured data are for on several species of

fish, i.e. fathead minnow (Pimephales promelas ),

guppy (Poecilia reticulata ), bluegill sunfish (Lepomis

macrochirus ), zebrafish (Brachydanio rerio ) and

rainbow trout (Oncorhynchus mykiss ), several species

of crustaceans (several species of Artemia, Crangon,

and Daphnia ), protozoa (Tetrahymena pyriformis ),

algae (several species of Chlorella and Scenedesmus )

and bacteria (Vibrio fischeri ). There is also a

considerable amount of data on aquatic insect larvae
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(Aedes and Culex mosquito species). Notification

requirements for the manufacturing and use of new

chemicals typically also stipulate information relevant

to environmental protection, such as aqueous solubi-

lity [6]. Over the next few years, several tens of

thousands of existing substances, including several

thousand high-production-volume chemicals must be

assessed for their environmental fate and effects. As

both testing facilities, and available funds and time are

limited, the task of assessing the environmental effects

of chemicals is shifting from laboratory work towards

the development of comprehensive QSAR expert

systems for the prediction of toxic effects of

substances based solely on molecular structure and

(occasionally) on environmental conditions specific to

the experiment.

For a considerable time, the task of modeling the

relationship between toxicity endpoints and various

measurable characteristics of toxicant molecules had

been handled almost exclusively through variations of

the linear regression paradigm and its multivariate

extensions, including partial least squares (PLS) and

principal component analysis [7]. Classical examples

of such QSARs are the Hansch-type models, where

the toxicity is expressed as function of the octanol/

water partition coefficient, or an incremental deriva-

tive thereof, such as a substituent’s hydrophobic

fragment value [8]. The main problem with such

models is their extremely limited scope. In other

words, they perform well, but only for very narrow

classes of compounds. To simultaneously accommo-

date more complex substances, not sharing the same

common molecular backbones, fragments, or charac-

teristics of a congeneric class, a variety of empirical

schemes were developed. Typically, they involve

rules of thumb on how to handle various classes of

chemicals and the selection of which particular

relationship to consider for each compound and

other workarounds. Most of the attempts to build a

toxicity prediction system to calculate the toxicity of

chemicals which contain simultaneously more than

one substance class result in failure because of their

limited scope and the conflicting predictions

(often differing by several orders of magnitude) for

compounds sharing features common to several

classes. An example of such a system is the US

EPA’s Ecological Structure Activity Relationships

(ECOSAR) toxicity estimation program [9], which

has been criticized for lack of statistical significance

[10,11]. The same criticism is valid for EPA’s ASTER

expert system, which is based on the same principles

[12]. An example of a viable toxicity prediction system

using only a few rules of thumb and relying on a few but

statistically significant multivariate regression type

QSARs is implemented in the program TOPKAT.

However, it too suffers from the restrictions imposed

by the models on which it is based.

The key to toxic effects of chemicals resides in

their molecular structure. In order to identify mean-

ingful relationships between the molecular structure

and the effects, the first challenge the expert is faced

with is to establish a pool of variables to be considered

by the modeling exercise. This pool of variables may

include indicators for the presence and/or counts of

various atoms and/or fragments of interest, as well as

various (more or less subjective) physico-chemical

parameters associated with the whole molecule,

particular fragments and/or particular atoms of the

associated structure, as well as various topological

indicators. The second challenge is to generate these

data. It must also be kept in mind that in all

relationships based on physico-chemical parameters

such as log P, kinetic parameters, orbital energies, and

so on, each is contributing its own additional

uncertainties to the resulting model. This can easily

be seen, for example, by comparing the values

obtained from different estimation programs for

log P with each other and/or the measured values;

differences of several orders of magnitude are not

uncommon. Therefore, where possible, the best

approach is to reduce or entirely eliminate these

additional sources of errors from the model by

eliminating the intermediate estimation of values

from the target relationships, and use instead as

input only information reflecting structural features of

the studied compounds. The particular choice of

parameters constitutes the basis for defining the

resulting model’s domain. Nevertheless, finding a

model’s domain boundaries remains an unsolved

problem. Only partial and subjective solutions,

based on the range of various values associated with

the input parameters corresponding to the compounds

used to build the model, are available at this moment.

With the assumption that the appropriate choice of

parameters suited to properly describe the corner of

chemical universe subject to study has been made, the
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third challenge is to identify the character of the

relationship between the input and output parameters

of the model. Approximating the target relationship

using multilinear regression may generate satisfactory

results only for very small and structurally narrow

classes of compounds. For the case of large and highly

diverse data sets such an approach is unrealistic and

an assumption of non-linearity is the natural alterna-

tive. On a common basis, because of the complexity

and the peculiarities of the available data, it is

impossible to verify the mathematical assumptions

imposed by most multivariate non-linear statistical

methodologies. Consequently, a new approach and

new tools are needed for the modeling exercise. In this

context, (artificial) neural networks (NN) offer the

most affordable alternative.

It should also be mentioned that there has been

criticism of the NN approach, particularly from

regulatory agencies, as to their ‘lack of transparency’

and perception as ‘black box’. Such views are

vehemently being opposed to by specialists in the

field and the reader is referred to, for example, the

classical work by Zupan and Gasteiger [13]. In

addition, it should be noted that there are very

different types of NNs, including those that do and

those that do not require iterative optimization of the

learning phase (e.g. determining the optimum number

of training cycles in order to maximize the prediction

capability/learning ratio). However, when using

identical inputs, and with proper optimization

(where such is necessary), NNs will give reproducible

results, based on defined mathematical relationships.

2. Neural network based QSARs in aquatic

toxicology

Basically, an artificial NN is a computational

device consisting of a group of processing elements

(neurons) organized in subgroups (layers). Each

subgroup may make its independent computations

and may pass the results to yet another subgroup.

The last subgroup consisting of one or more

processing elements determines the output from the

network. Practically, at a very simplified level,

artificial NNs mimic the way the human brain

organizes and processes information, and the way

the meaningful part of that information is identified

and stored for future purposes. Chemists and toxicol-

ogists may get an insight into the field of artificial NN

modeling in Ref. [13]. More examples of QSAR

studies involving artificial NNs may be found in Refs.

[14,15]. In aquatic toxicology artificial NNs may be

used mainly for three different purposes; (a) mapping;

(b) classification; (c) model dimensionality reduction.

The mapping focuses on building QSARs for the

estimation of toxicity endpoints, the time required

for complete primary and ultimate biodegradation,

lipophilicity, etc. Practically, all artificial NNs

used for mapping are feed-forward NNs. The

best QSAR mapping models were obtained

using two different neural network paradigms:

(i) back-propagation neural networks (BNNs), based

on minimizing distances and maximizing corre-

lations; and (ii) probabilistic neural networks

(PNNs), based on recognizing the distributional

characteristics of the population. Kohonen neural

networks (KNNs) were used to handle classifications

based on mode of action [16]. Although not exploited

yet, there is an enormous potential to use PNNs

(which are in essence implementations of Bayesian

classifiers) to handle very diverse toxicant classifi-

cations (including mode of action, carcinogenic and/

or mutagenic character, etc.). The model dimension-

ality reduction targets the combination of input

parameters corresponding to the best performing NN

as identified through the application of a genetic

algorithm type (GA) search template to a population

of NN models using for fitness evaluation purposes

various numerical characteristics associated to the

errors generated by the models.

2.1. Neural network models for toxicity to fish species

One of the first attempts in modeling the

toxicity of chemicals to fish species making use of

artificial NNs is reported in Ref. [17]. The

endpoint subject to study was the 96 h LC50 toxicity

to the fathead minnow (P. promelas ) expressed in

log(l/mmol). The purpose of the modeling experiment

was to investigate the potential of replacing fish as

laboratory test species with the luminescent bacterium

V. fischeri. The input in the model consisted of

measured EC50 toxicity to V. fischeri (5–30 min),

log Kow, the logarithm of the molecular weight, and

another 48 molecular descriptors including
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the presence and/or counts of numbers of atoms and/

or fragments of interest (aromatic rings, acid groups,

ester groups, amino groups, etc.). The data set

contained information on 419 highly diverse com-

pounds, including both organics and inorganics. The

model used a three-layer back-propagation NN with

51 neurons in the input layer, 7 neurons in the hidden

layer, and one neuron in the output layer, all in

agreement with the geometric pyramid rule (see page

176 in Ref. [18]). Data pre-processing consisted in

combinations of Z-transforms, sigmoid logistic, and

convenient interval compression functions. The

learning involved 400 training cycles, the optimal

moment of stopping the training being detected using

a complete 20% leave-out cross-validation exper-

iment using random selection. The random uniform

distribution in [20.1, 0.1] was used to seed the

training process. The best learning rate was found to

be 0.5. On the given 419 compounds set, the

correlation between measured and predicted values

generated by this model was 0.916, with an average

error of 0.158, standard deviation of errors of 0.596

and the average square error of 0.333, altogether

indicating very good performance. The experiment

proved that for a large number of classes of

compounds it is possible to replace the fathead

minnow as test species with V. fischeri. Ref. [17] is

also important, although for a completely different

reason: it gives the explicit system of equations

describing a trained NN based on real data, clear proof

that NNs are not black boxes.

Fine tuning a back-propagation NN is a challen-

ging and time-consuming task. Other NN choices may

provide a faster approach. A PNN with Gaussian

kernel QSAR model for the same problem, using the

same data pre-processing algorithms, and validated

through a complete 20% leave-out cross-validation

experiment and using random selection, is reported in

Ref. [19]. For the given 419 compounds set, the

correlation between measured and predicted values

generated by the PNN model was 0.941, with an

average error of 20.041, standard deviation of errors

of 0.530 and the average square error of 0.283,

completely confirming the conclusions of the model

reported in Ref. [19]. At this stage, it was natural to

ask the question if the presence of the measured

toxicity value for another species was really necessary

for the QSAR model, and the answer was that it was

not necessary. Three PNNs with Gaussian kernel

QSAR models for the 96 h LC50 toxicity to the

fathead minnow, based on the same set of compounds,

and using log Kow and the same physico-chemical

descriptors but no toxicity values for another species

are presented in Ref. [20]. Training corrections were

included in the models and the validation was

performed through complete 20% leave-out cross-

validation experiments and used random selection.

The difference between the three models was simply

the choice of data pre-processing strategy. For

example, applying data pre-processing consisting of

combinations of Z-transforms and hyperbolic tangent

functions, on the given 419 compounds set, the

correlation between measured and predicted values

was 0.932, with an average error of practically zero,

the standard deviation of errors of 0.55 and the

average square error of 0.305. Replacing the hyper-

bolic tangent function with the sigmoid logistic

function resulted in a very small improvement in the

model. The same was true for data pre-processing

based on finite interval transforms.

All previously discussed NN models for the 96 h

LC50 toxicity to the fathead minnow included log Kow

as input variable. For many substances, the log Kow

values are generated by other QSARs interpreting

the molecular structure information in their

peculiar ways. Therefore, it should be possible to

omit log Kow as variable when including in the list of

input variables the type of information on which the

computation of log Kow relies. Such a model is

reported in Ref. [21]. It is based on a larger data set

consisting of 865 highly diverse chemicals and uses as

input variables 33 molecular descriptors associated

with the presence or counts of molecular fragments

(aromatic rings, acid groups, nitro groups, cyano

groups, ether linkages, etc.), counts of atoms (C, H,

As, Br, Cl, F, Fe, Hg, I, K, N, Na, O, P, S, Se, Si, Sn

and Zn), the logarithm of the molecular weight, and

the logarithm of the ratio of the molecular weight

corresponding to all counted atoms over the whole

molecular weight. The PNN with Gaussian kernel was

used to handle the modeling exercise. The data pre-

processing consisted of combinations of Z-transforms

and hyperbolic tangent function. Training corrections

were included in the model. The validation was

handled through a complete 20% leave-out cross-

validation experiment using random selection. On
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the 865 substances data set, the correlation coefficient

between measured and values predicted by the model

was 0.932, with an average error of practically zero,

standard deviation of errors of 0.591, and average

square error of 0.349. This is one of the first non-

log Kow type models for the 96 h LC50 to the fathead

minnow reported in the literature and based exclu-

sively on molecular structure. A practical implemen-

tation of this methodology (described in Ref. [22]) has

been used to perform substance toxicity screening for

almost 2000 compounds from the Canadian Domestic

Substances List, with results superior to all other

available methodologies, including ECOSAR,

ASTER, CNN, TOPKAT, and OASIS [23].

A completely different approach for the prediction

of the acute toxicity of organic compounds to the

fathead minnow based on the molecular structure is

presented in Ref. [24]. The modeling experiment

considered a 375 compound subset of the data set used

in Ref. [19]. For each compound, a total of 272

descriptors were calculated (counts of atoms of

interest, number of double bonds, solvent-accessible

surface area, moments of inertia, the charge on the

most negative or positive atoms, HOMO and LUMO

energies, charged partial surface area descriptors,

etc.). Eliminating the featureless descriptors, the ones

exhibiting greater than 90% redundancy in their

response values, as well as selecting from each

subgroup of highly correlated descriptors a represen-

tative one, resulted in a reduced pool of 123

descriptors. The 375 substances set was randomly

split into three subsets, the largest of them consisting

of 287 compounds and used for training purpose, a

subset of 44 compounds used to validate the training

(e.g. to detect the moment when the training must be

stopped in order to avoid over-training), while the

remaining compounds were used as external test set.

The reduced pool of descriptors was then submitted to

a GA feature selection routine incorporating a three-

layer 8-6-1 feed forward fully connected neural

network (CNN) for fitness evaluation. The 10 best

models identified by the GA/CNN combination were

reviewed and then used to generate predictions for the

compounds in the external test set. The criterion of

selecting the final model was its performance on this

set. The eight descriptors used by the final model were

as follows: (d1) count of the number of chains of

length 7 in the molecule; (d2) number of double bonds

(excluding those in aromatic rings); (d3) sum of

weighted paths originating from oxygen atoms; (d4)

ratio of intermediate to shortest geometric axis of the

molecule, including hydrogen atoms; (d5) the charge

of the most negatively charged atom in the molecule;

(d6) second major moment of inertia; (d7) the product

of the sum of negatively charged partial surface area

and the total molecular surface area; and (d8) the ratio

of the sum of charges on acceptor atoms over the

number of acceptor atoms. On the given 375

compounds set, the correlation between measured

values and the predictions generated by this model

was 0.866, with an average error of 20.022, the

standard deviation of errors of 0.722 and the average

square error of 0.522.

It is possible to expand the scope of the toxicity

modeling exercise by including into the model also

information which reflects biological response

characteristics of the organisms under study as well

as information on specific test conditions. There are

two studies reporting such models, specifically on the

acute toxicity of pesticides to fish species. The first

study [25] investigates the acute toxicity to the

rainbow trout O. mykiss using detailed information

of toxicity experiments for 70 pesticides. It is based on

a data set consisting of 447 LC50 experimental values

expressed as log(l/mmol), together with the associated

bioassay information (fish weight, time of exposure,

water temperature, pH, and hardness). For modeling

purposes, the data set was split into a training set and a

test set. The training set grouped all the information

concerning 384 of the 447 available endpoints. The

test set grouped the information related to the

remaining 63 endpoints. The developed model con-

sists of a three-layer 13-6-1 BNN. Additional to the

fish weight, time of exposure, water temperature, pH

and hardness, the input to the model includes eight

autocorrelation descriptors designed from the hydro-

gen-suppressed graphs of the molecules: H0 to H5 (for

lipophilicity), HBA0 (for H-bonding acceptor ability),

and HBD0 (for H-bonding donor ability). For the data

pre-processing convenient linear interval compression

transforms were applied. A small data set grouping

the same information for seven additional endpoints

from chemicals categorized as industrials (and con-

taining the same atoms and functional groups found in

the selected pesticides) was used to validate the

training. Computed from the values reported in
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Tables 1 and 2 in Ref. [25], the standard deviation of

the errors produced by the model was 0.355 for the

training set, and 0.328 for the test set.

The second study [26] targets the acute toxicity to

the fish bluegill (L. macrochirus ). The data incorpor-

ate 431 LC50 experimental values for 66 pesticides

together with the associated bioassay information

(fish weight, time of exposure, water temperature, pH,

and hardness). The data set was then split into two

subsets, a training set and a test set, with the former

comprising 400 of the 431 available endpoints and the

latter consisting of the remaining 31 endpoints. This

model also uses a three-layer 13-6-1 BNN with the

same input variables and same data pre-processing

strategy as the previously discussed rainbow trout

model. An additional data set of 15 endpoints from

chemicals categorized as industrials was used to

validate the training. Computed from the values

reported in Tables 1 and 2 in Ref. [26], the standard

deviations of errors generated by the model were

0.345 for the training set and 0.352 for the test set.

Despite limitations in the data sets, both studies reveal

that the NN model was able to take into account the

influence of the experimental conditions of the

toxicity results.

Classification of substances according to their

toxic mode of action is one of the important topics

of predictive toxicology. Basak et al. [27] report toxic

mode of action classification experiments based on

learning vector quantization (LVQ) classification

networks. The target species was the fathead minnow

fish P. promelas, and the data consisted on infor-

mation on 60 molecular topological descriptors for

283 chemicals. The data set was divided into a

training set of 220 substances and a test set containing

the information on the remaining 63 compounds. Two

modeling experiments were described. The first

experiment (tier I analysis) focused on discriminating

among uncouplers of oxidative phosphorylation,

acetylcholinesterase (AChE) inhibitors, neurotoxi-

cants, neurodepressants/respiratory blockers, and a

combined group containing narcosis I (baseline

narcosis), narcosis II (polar narcosis), and electro-

phile/proelectrophile reactive compounds. The model

consisted of a 60-5-5 (input-Kohonen-output) LVQ

classification NN. For the training set the (producer’s)

classification accuracy was: 98% for the combined

narcosis I, narcosis II, and electrophile/proelectro-

phile class, 80% for uncouplers, 64% for AChE

inhibitors, 57% for the neurotoxicants, and 67% for

the respiratory blockers/neurodepressants. For the test

set, the classification accuracy was: 98% for the

combined narcosis I, narcosis II, and electrophile/

proelectrophile class, 100% for uncouplers, 67% for

AChE inhibitors, 50% for the neurotoxicants, and 0%

for the respiratory blockers/neurodepressants. The

second experiment (tier II analysis) attempted to

discriminate between narcosis I, narcosis II, and

electrophile/proelectrophile reactives. That model

consisted of a 60-6-3 (input-Kohonen-output) LVQ

classification NN. The (producer’s) classification

accuracy on the training set was 88% for the narcosis

I group, 84% for the narcosis II group, and 66% for the

electrophile/proelectrophile reactives. On the test set

this accuracy was: 77% for the narcosis I group, 83%

for the narcosis II group, 78% for the mixed narcosis

I/II compounds, and 56% for the electrophile/

proelectrophile reactives. These results may indicate

the need for additional input-parameters, reflecting

physico-chemical properties of the compounds.

It is well accepted that industrial and municipal

wastewaters are major sources of contamination

involving very complex mixtures of thousands of

different types of chemicals. Both the USA and

Canada use a standardized rainbow trout O. mykiss

acute lethality bioassay [28] to assess the toxic

properties of such mixtures. The cost associated

with repeating such experiments on a regular basis

is considerable. Gagné and Blaise [29] investigated

the possibility of using a combination of less

expensive 5–15 min incubation time chemolumines-

cent peroxidase (Cl-Per) and Microtoxe tests instead.

The first test can detect radical scavengers and

enzyme-inhibiting substances. The second test inter-

prets the reduction of light emission by V. fischeri

bacteria during the exposure as a measure of toxicity.

Neural networks were used to model the relationship

between the toxicity assessments generated by the

rainbow trout bioassay (96 h) and the assessments

based on a combination of Cl-Per and Microtoxe

tests. The data used are toxic threshold concentrations

detected by Cl-Per and Microtoxe tests and the

corresponding lethality concentrations for the rain-

bow trout in 20 wastewater samples. Two three-layer

2-3-1 BNNs were built using as training set the data

associated to 10 randomly selected effluent samples
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from the 20 available. The rest of the data was used

for test purposes. The first model targeted the actual

toxic concentration for trout while the second was

designed to differentiate between toxic and non-toxic

effluents in 96 h exposure tests. The performance of

the networks was measured against the following

criterion: the number of correct predicted values

within ^20% of the real value. On the test set, the

BNN for toxic concentrations was successful in 60%

of the cases. The predictive accuracy increased to

90% for the model discriminating between toxic and

non-toxic samples. Similar accuracy was provided by

a Boltzmann machine type NN investigating the

relationship between the toxicity of the effluent as

identified by the three toxicity assays. The results

suggest that the combination of Cl-Per and Micro-

toxe tests may provide a less expensive alternative

for the rainbow trout test in assessment studies

targeting effluent toxicity.

2.2. Neural network models for toxicity to aquatic

macro-invertebrates

Macro-invertebrates represent another important

group of organisms used for the purpose of investi-

gating the adverse effects of chemicals. Neural

network QSAR models for aquatic invertebrates

target mainly two species: the midge Chironomus

riparius, and the water flea Daphnia magna.

A QSAR neural network model for the toxicity of

ten organophosphorus insecticides to the midge larvae

is presented in Ref. [30]. The data set consists of 180

measured EC50 24 h toxicity endpoints expressed in

log(l/mmol), together with experimental information

on sediment presence and water temperature and pH.

The data set was divided into a training set of 164

records and a test set of 16 records. The identified

model was a 10-5-1 BNN. Seven of the ten input

parameters in the model were Boolean descriptors

reflecting the bioassay conditions (temperature: 11,

18, or 25 8C; pH value: 6, 7, or 8; and the presence or

absence of sediment). The remaining three descriptors

were the components H0, H2 and H7 of the

lipophilicity autocorrelation vector H computed

from the hydrogen-suppressed graph of the molecule.

The data pre-processing consisted of a classical min/

max transformation, and the training was stopped

after approximately 500 learning cycles. Computed

from the values reported in Tables 1 and 2 in Ref. [30]

the standard deviation of the errors produced by the

model was 0.104 for the training set, and 0.189 for the

test set.

Various PNN models for the toxicity to D. magna

are presented in Ref. [31]. The data consist of 48 h

LC50 acute toxicity values for a highly diverse set of

776 organic chemicals, expressed in log(l/mmol). A

training set was assembled by a random selection of

700 of the available 776 compounds with the

remaining 76 substances forming the external test

set. Two complete 20% leave-out cross-validation

experiments based on random selection are reported.

The first targeted exclusively the training set, while

the second was performed on all the data. The input

variables for all models consists of 40 molecular

fragment descriptors associated with the presence or

counts of molecular fragments (aromatic rings, acid

groups, nitro groups, cyano groups, ether linkages,

etc.), counts of atoms (C, H, Br, Cl, F, Fe, Hg, I, Mn,

N, Na, O, P, S, Si, Sn and Zn) and the molecular

weight. Four models based on the PNN paradigm

were built. The first is represented by a basic PNN

with Gaussian kernel trained on the whole training set,

training correction included. The other three models

are various combinations of the five basic PNNs with

Gaussian kernel built as part of the 20% leave-out

cross-validation experiment performed on the same

700 compounds set. The data pre-processing consisted

of combinations of Z-transforms and hyperbolic

tangent function. All four models were validated

through external validation using the 76 compounds

external test set. We limit here our discussion to the

first model only. On the 700 compound training set,

the Pearson’s correlation coefficient between

measured and values predicted by this model was

0.875, with an average error of practically zero, a

standard deviation of errors of 0.558, and an average

square error of 0.312. On the 76 compounds external

test set the Pearson’s correlation coefficient between

measured and values predicted by the model was

0.764, with an average error of 0.061, standard

deviation of errors of 0.667, and average square

error of 0.449. For comparison, the US EPA ECOSAR

toxicity assessment expert system based on Hansch-

type relationships and rules of thumb was unable to

handle three of the compounds in the external test set.

For the remaining 73 compounds, the Pearson’s
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correlation coefficient between measured and ECO-

SAR predicted values was 0.322, with an average

error of 20.442, standard deviation of errors of 1.362,

and average square error of 2.051. At least in this

example, the superior performance of the NN model is

obvious.

2.3. Neural network models for toxicity to protozoa

Among the aquatic unicellular ciliated protozoa,

Tetrahymena species are very common, have a very

short generation time, and are non-pathogenic. They

may be easily cultivated with inexpensive media and

ambient conditions, and consequently they represent

very attractive alternatives for fish or macro-invert-

ebrates in laboratory experiments targeting the

environmental impact of man-made or naturally

occurring toxicants.

A first attempt to investigate the 48 h IC50

sublethal (growth inhibitory) toxicity to T. pyrifor-

mis using NNs is presented in Ref. [32]. All models

are based on a data set containing information on

825 highly diverse organic chemicals from which

750 randomly selected compounds were used as

training set for the modeling exercise and the

remaining 75 compounds as external test set. A

complete leave-20%-out cross-validation experiment

based on random selection was performed on the

750 compounds set. Four models based on basic

PNNs with Gaussian kernels were constructed. The

first consists of a basic PNN with Gaussian kernel

trained on the whole training set, training correc-

tions included. The next three models involve

various combinations of the five PNNs identified

as part of the cross-validation experiment. All

models were validated using the external test set.

The input to all models consists of 32 molecular

descriptors for the presence or number of occur-

rences of fragments of interest (aromatic rings, acid

groups, ester groups, amino groups, sulfide bridges,

etc.), the molecular weight, and the number of

individual occurrences of C, H, Br, Cl, F, I, N, O

and S atoms. The output was the 48 h IC50 toxicity

endpoint expressed in log(l/mmol). Data pre-proces-

sing was handled through combinations of Z-trans-

forms and hyperbolic tangent function. We limit

here our discussion to the first model only. For the

750 compound training set, the Pearson’s correlation

coefficient between measured and values predicted

by this model was 0.936, with an average error of

practically zero, a standard deviation of errors of

0.264, and an average square error of 0.070. On the

75 compounds external test set the Pearson’s

correlation coefficient between measured and values

predicted by the model was 0.882, with an average

error of 0.045, standard deviation of errors of 0.306,

and average square error of 0.096.

A larger and by far more diverse data set

containing information on 1084 compounds is

analyzed in Ref. [33]. Using random selection,

the data were split into a 1000 compound training

set and an 84 compound external test set. The basic

PNN with Gaussian kernel (training corrections

included) was used to generate the model. The

input was expanded to 42 molecular descriptors

including presence and counts of fragments of

interest (various types of rings, various functional

groups, longest aliphatic chain, ether linkages,

quinone character, etc.), the molecular weight, and

the number of individual occurrences of the C, H,

Br, Cl, F, I, N, Na, O and S atoms. The output was

the 48 h IC50 toxicity endpoint expressed in log(l/

mmol). The data pre-processing strategy was the

same as used in Ref. [32]. For the 1000 compound

training set, the Pearson’s correlation coefficient

between measured and predicted values was 0.899,

with an average error of practically zero, standard

deviation of errors of 0.323, and average square

error of 0.104. On the 84 compounds external test

set, the Pearson’s correlation coefficient between

measured and predicted values was 0.803, with an

average error of 0.022, standard deviation of errors

of 0.441, and average square error of 0.195.

A completely different type of relationship

between the molecular structure and the 48 h IC50

toxicity endpoint to T. pyriformis was targeted in Ref.

[34]. A data set of 448 aromatic compounds was used

to build the models, while an external test set of

an additional 52 compounds was used to validate

the final model. These data are a subset of the data sets

used in Refs. [32,33]. The 448 compound set was split

by random selection into a 287 compounds CNN

training set, a 81 compound CNN training validation

set, and a 80 compound GA/CNN evaluation set. For

each of the 448 substances a number of approximately

200 molecular structure descriptors were computed
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based on topological and electronic properties of the

molecules. Based on various criteria, this number was

reduced to approximately 60 descriptors. The reduced

pool of descriptors was then submitted to a GA feature

selection routine incorporating a three-layer 11-5-1

CNN for fitness evaluation. The final model was the

result of averaging the 10 best models identified by

the GA/CNN combination. The input parameters in

the model are: (p1) number of path clusters of length 6

with at least one branch point; (p2) number of path

chains of length 7 with at least one atom in a ring

system; (p3) number of double bonds; (p4) number of

sp2 hybridized carbons bonded to three other carbons;

(p5) number of sp2 hybridized carbons bonded to two

other carbons; (p6) sum of E-state values over all

hetero atoms; (p7) square root of the gravitational

index over all hetero atoms; (p8) difference in partial

positive and partial negative molecular charges; (p9)

sum of the surface area charge product of the proton

acceptor atoms divided by the number of proton

acceptor atoms; (p10) sum of the charges on all

donatable protons; and (p11) count of proton acceptor

atoms. The output is the 48 h IC50 endpoint expressed

in log(l/mmol). For the 52 compound external test set,

the Pearson’s correlation coefficient between the

measured and model predicted values was 0.55, with

an average error of 0.033, standard deviation of errors

of 0.599 and average square error of 0.353.

A comparatively small set of the toxicity of 278

substituted benzenes towards T. pyriformis was

analyzed by Burden and Winkler [35] with both the

PLS and a Bayesian regularized neural network

(BRANN) method, using a leave-20%-out cross-

validation. The independent parameters for that

study were solely derived from the molecular

structure of the compounds. The results showed the

superiority of the BRANN method. The authors also

concluded that the NN methodology appears to be

able to model more diverse chemical classes and more

than one mechanism of toxicity.

2.4. Neural network models for toxicity to aquatic

bacteria

Bacteria are the smallest test organisms used in

conducting experiments assessing the toxic effects of

chemicals on the environment. For practical reasons,

including the very low cost, the luminescent bacteria

V. fischeri (formerly known as Photobacterium

phosphoreum ) is by far the most popular choice.

The most used endpoint of interest is the effective

concentration EC50 inducing a 50% reduction of the

light emission of the test bacteria in a given time,

typically 5, 15, or 30 min.

A first attempt to model the EC50 for V. fischeri

using NNs is reported in Ref. [36]. A data set

consisting of 30 min EC50 endpoints for 604

compounds was used to build the model. A training

validation set consisting of 150 representative com-

pounds was isolated from the 604 chemicals data set,

while the remaining 454 compounds formed the

training set. An external test set consisting in EC50

noisy values for 143 chemicals for which the toxicity

was measured after an exposure period different from

30 min has been assembled. For each chemical in the

training set, the first 10 components of autocorrelation

hydrophobicity and molar refractivity vectors were

computed from the hydrogen-suppressed graph of the

molecule. The first five components identified by

stepwise regression analysis were used as input for a

three-layer 5-10-1 BNN. The model output was the

EC50 expressed in log(l/mmol). Data pre-processing

consisted of a classical min/max interval linear

compression into [0.05, 0.95]. The average square

error generated by the model was 0.09 for the training

set, 0.116 for the training validation set, and 0.212 for

the external test set.

A larger and more diverse data set, containing

information on 1308 compounds, is analyzed in

Ref. [37]. A test subset of 240 compounds was

identified using the N2M method [38]. A training set

consisting of 2795 various test duration (mostly

30 min) EC50 endpoints for the remaining 1068

chemicals was assembled. A similar set consisting

of 385 EC50 endpoints for the 240 selected com-

pounds was used as test set. The final model was a

three-layer 36-26-1 BNN. The 36 input parameters

consisted of: exposure time, the first 15 components of

the autocorrelation vector H encoding lipophilicity,

the first 15 components of the autocorrelation vector

MR representing molar refractivity, the first four

components of the vector HBA encoding H-bonding

acceptor ability, and the first component of the

autocorrelation vector HBD encoding the H-bonding

donor ability, all calculated from the hydrogen-

suppressed graph of the molecule. The output was
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the EC50 endpoint expressed in log(l/mmol). Classi-

cal min/max linear interval compression was used for

data pre-processing. The training involved approxi-

mately 5000 cycles. The average square error

produced by the model was 0.133 for the 2795

endpoints training set and 0.151 for the 385 endpoints

test set.

Three PNNs with Gaussian kernel QSAR

models for the EC50 endpoint to V. fischeri

built on a 419 compound data set are presented in

Ref. [20]. Where available, 30 min test values were

used preferentially, and 15 or 5 min were used

instead for compounds where no 30 min values were

available. The validation was handled through a 20%

leave-out cross-validation using random selection,

and training corrections were included in the models.

The models input consisted of log Kow, the logarithm

of the molecular weight, and another 48 molecular

descriptors including the presence and/or counts of

numbers of atoms and/or fragments of interest

(aromatic rings, acid groups, ester groups, amino

groups, etc.). The difference between the three models

was the choice of data pre-processing strategy. For

example, for the case of data pre-processing consist-

ing of classical linear min/max compression

functions, on the given 419 compounds set, the

correlation between measured and values produced by

the corresponding model was 0.919, with an average

error of 20.008, the standard deviation of errors of

0.360 and the average square error of 0.129. Similar

results were obtained for data pre-processing consist-

ing of combinations of Z-transforms with the sigmoid

logistic, respectively, hyperbolic tangent function.

In 1998, another PNN-based model for V. fischeri

was presented, using a much larger set of 1238

compounds [39]. The cross validation experiment

was performed with five random leave-20%-out

data sets that resulted in very similar submodels.

This work also explored the effect of aqueous

solubility on the resulting predictions. Including the

experimental aqueous solubility with the structural

fragments used as independent parameters gave a

standard deviation of 0.614, excluding it, resulted in a

model with the standard deviation of 0.628.

3. Conclusions

A simple analysis of the performance of the

discussed models confirms the ability of NNs to

Table 1

Statistical data for the major neural network studies on aquatic organisms

Speciesa Number of compounds RMSEb, Test r 2, Test SE, Test Method Ref.

Total Training Test

FHM 865 865 £ 0.80 865 £ 0.20 0.76 PNN [21]

FHM 419 419 £ 0.80 419 £ 0.20 PNN [17]

FHM 375 287 44 0.74 CNN [24]

FHM 375 287 88 0.75 MLR [24]

RBT 447 384 63 BNN [25]

BGL 431 400 31 BNN [26]

DM 776 700 76 0.76 0.67 PNN [31]

TEHY 825 825 £ 0.80 825 £ 0.20 0.88 PNN [32]

TEHY 1084 1000 84 0.80 0.31 PNN [33]

TEHY 448 287 80 0.34 CNN [34]

TEHY 448 287 52 0.59 CNN [34]

VF 1308 1068 240 0.36 BNN [37]

VFc 1238 1238 £ 0.80 1238 £ 0.20 0.76 0.61 PNN [39]

VFd 1238 1238 £ 0.80 1238 £ 0.20 0.79 0.63 PNN [39]

a Abbreviations used: FHM, fathead minnow; RBT, rainbow trout; BGL, bluegill sunfish; DM, Daphnia magna; TEHY, Tetrahymena

pyriformis, VF, Vibrio fischeri.
b RMSE: Root mean square error.
c Including solubility as independent parameter.
d Excluding solubility as independent parameter.
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model large sets of chemicals of different complexity

and mode of action. In contrast to the traditional,

highly focused and linear QSAR methods, NNs are

able to handle non-linear relationships. This ability is

of particular importance in the environmental field,

where tens of thousands of complex substances have

to be assessed in relatively short time. In fact, many of

the compounds listed on the DSL are not amenable to

prediction with the presently available linear model

programs. Furthermore, NNs do not require the use of

subjective rules of thumb, the only required infor-

mation is the molecular structure and (in some cases)

other variables of the bioassay conditions. This makes

these NN-type QSARs the perfect tool for conducting

toxicity assessment studies for very diverse lists of

chemicals. Table 1 gives an overview of the statistics

of the major models described here.

Acknowledgements

I thank Dr S.P. Niculescu for contributions to this

work.

References

[1] S. Jensen, AMBIO 1 (1972) 123.

[2] Canada, http://cbsc.org.

[3] US EPA, 2001,http://www.epa.gov/grtlakes/bns/pcb/steppcb.

html.

[4] H. Fiedler, Regulations and Management of PCB in Germany,

http://www.chem.unep.ch/pops/stpeter/stpete2b.html.

[5] OECD, OECD Guideline 202, part 1, Daphnia sp., Acute

Immobilisation Test.

[6] Canadian Environmental Protection Act, 1999, http://laws.

justice.gc.ca/en/C-15.31/SOR-94-260/67704.html.

[7] J.M. Sutter, J.H. Kalivas, P.M. Lang, J. Chemom. 6 (1992)

217.

[8] Y.H. Zhao, M.T.D. Cronin, J.C. Dearden, Quant. Struct.-Act.

Relat. 17 (1998) 131.

[9] US EPA, 2000, http://www.epa/gov/oppt/newchems/

21ecosar.htm.

[10] K.L.E. Kaiser, J.C. Dearden, W. Klein, T.W. Schultz, Water

Qual. Res. J. Can. 34 (1999) 179.

[11] J. Devillers, Modélisation en Écotoxicologie, Club CRIN
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G. Schüürmann (Eds.), Quantitative Structure–Activity

Relationships in Environmental Sciences—VII, SETAC

Press, Pensacola, FL, 1997, p. 285.

[20] S.P. Niculescu, K.L.E. Kaiser, G. Schüürmann, Water Qual.
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